Prostaglandin E2 induces vascular relaxation by E-prostanoid 4 receptor-mediated activation of endothelial nitric oxide synthase.
نویسندگان
چکیده
The present experiments were designed to test the hypothesis that prostaglandin (PG) E(2) causes vasodilatation through activation of endothelial NO synthase (eNOS). Aortic rings from mice with targeted deletion of eNOS and E-prostanoid (EP) receptors were used for contraction studies. Blood pressure changes in response to PGE(2) were measured in conscious mice. Single doses of PGE(2) caused concentration-dependent relaxations during contractions to phenylephrine (EC(50)=5*10(-8) mol/L). Relaxation after PGE(2) was absent in rings without endothelium and in rings from eNOS(-/-) mice and was abolished by N(G)-nitro-l-arginine methyl ester and the soluble guanylate cyclase inhibitor 1H(1,2,4)-oxadiazolo-[4,3-a]quinoxalin-1-one. In PGE(2)-relaxed aortic rings, the cGMP content increased significantly. PGE(2)-induced relaxations were abolished by the EP4 receptor antagonist AE3-208 (10(-8) mol/L) and mimicked by an EP4 agonist (AE1-329, 10(-7) mol/L) in the presence of endothelium and eNOS only. Relaxations were attenuated significantly in rings from EP4(-/-) mice but normal in EP2(-/-). Inhibitors of the cAMP-protein kinase A pathway attenuated, whereas the inhibitor of protein phosphatase 1C, calyculin (10(-8) mol/L), abolished the PGE(2)-mediated relaxation. In aortic rings, PGE(2) dephosphorylated eNOS at Thr(495). Chronically catheterized eNOS(-/-) mice were hypertensive (137+/-3.6 mm Hg, n=13, versus 101+/-3.9 mm Hg, n=9) and exhibited a lower sensitivity of blood pressure reduction in response to PGE(2) compared with wild-type mice. There was no difference in the blood pressure response to nifedipine. These findings show that PGE(2) elicits EP4 receptor-mediated, endothelium-dependent stimulation of eNOS activity by dephosphorylation at Thr(495) resulting in guanylyl cyclase-dependent vasorelaxation and accumulation of cGMP in aortic rings.
منابع مشابه
Rocuronium Bromide Inhibits Inflammation and Pain by Suppressing Nitric Oxide Production and Enhancing Prostaglandin E2 Synthesis in Endothelial Cells
PURPOSE Rocuronium bromide is a nondepolarizing neuromuscular blocking drug and has been used as an adjunct for relaxation or paralysis of the skeletal muscles, facilitation of endotracheal intubation, and improving surgical conditions during general anesthesia. However, intravenous injection of rocuronium bromide induces injection pain or withdrawal movement. The exact mechanism of rocuronium ...
متن کاملGene expression changes of prostanoid synthases in endothelial cells and prostanoid receptors in vascular smooth muscle cells caused by aging and hypertension.
The present study was designed to assess whether or not changes in genomic expression of cyclooxygenases (COX-1, COX-2), endothelial nitric oxide synthase (eNOS), and prostanoid synthases in the endothelium and of prostanoid receptors in vascular smooth muscle contribute to the occurrence of endothelium-dependent contractions during aging and hypertension. Gene expression was quantified by real...
متن کاملVitamin D and cardiovascular risk in postmenopausal women: how to translate preclinical evidence into benefit for patients.
Preclinical work indicates that calcitriol restores vascular function by normalizing the endothelial expression of cyclooxygenase-2 and thromboxane-prostanoid receptors in conditions of estrogen deficiency and thus prevents the thromboxane-prostanoid receptor activation-induced inhibition of nitric oxide synthase. Since endothelial dysfunction is a key factor in the pathogenesis of cardiovascul...
متن کاملRole of neuronal nitric-oxide synthase in estrogen-induced relaxation in rat resistance arteries.
Estrogen has antihypertensive and vasorelaxing properties, partly via activation of endothelial nitric-oxide synthase (eNOS). Recently, neuronal nitric-oxide synthase (nNOS) has been detected in vascular cells, although the significance of this is unclear. Estrogen was found to stimulate nNOS in certain cultured cells. We hypothesized that estrogen regulates vascular tone partly via endothelium...
متن کاملDeletion of G protein-coupled estrogen receptor increases endothelial vasoconstriction.
Endogenous estrogens mediate protective effects in the cardiovascular system, affecting both endothelium-dependent and endothelium-independent mechanisms. Previous studies have suggested that nonselective estrogen receptor agonists such as endogenous estrogens inhibit endothelium-dependent vasoconstriction; however, the role of estrogen receptors in this response has not yet been clarified. Thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Hypertension
دوره 50 3 شماره
صفحات -
تاریخ انتشار 2007